Главная       Продать работу       Блог       Контакты       Оплата       О нас       Как мы работаем       Регистрация       Вход в кабинет
Тех. дипломные работы
   автомобили
   спец. техника
   станки
   тех. маш.
   строительство
   электроснабжение
   пищевая промышленность
   водоснабжение
   газоснабжение
   автоматизация
   теплоснабжение
   холодильники
   машиностроение
   др. тех. специальности

Тех. курсовые работы
   автомобили
   спец. техника
   станки
   тех. маш.
   строительство
   детали машин
   электроснабжение
   газоснабжение
   водоснабжение
   пищевая промышленность
   автоматизация
   теплоснабжение
   ТММ
   ВСТИ
   гидравлика и пневматика
   машиностроение
   др. тех. специальности

Тех. дополнения
   Отчеты
   Расчетно-графические работы
   Лекции
   Задачи
   Лабораторные работы
   Литература
   Контрольные работы
   Чертежи и 3D моделирование
   Тех. soft
   Рефераты
   Общий раздел
   Технологический раздел
   Конструкторский раздел
   Эксплуатационный раздел
   БЖД раздел
   Экономический раздел
   Экологический раздел
   Автоматизация раздел
   Расчетные работы

Гум. дипломные работы
   педагогика и психология
   астрономия и космонавтика
   банковское, биржевое дело
   БЖД и экология
   биология и естествознание
   бухгалтерский счет и аудит
   военное дело
   география
   геология
   государство и право
   журналистика и СМИ
   иностранные языки
   история
   коммуникации
   краеведение
   кулинария
   культура и искусство
   литература
   экономика и торговля
   математика
   медицина
   международное отношение
   менеджмент
   политология
   музыка
   религия
   социология
   спорт и туризм
   таможенная система
   физика
   химия
   философия
   финансы
   этика и эстетика
   правознавство

Гум. курсовые работы
   педагогика и психология
   астрономия и космонавтика
   банковское, биржевое дело
   БЖД и экология
   биология и естествознание
   бухгалтерский счет и аудит
   военное дело
   география
   геология
   государство и право
   журналистика и СМИ
   иностранные языки
   история
   коммуникации
   краеведение
   кулинария
   культура и искусство
   литература
   экономика и торговля
   математика
   медицина
   международное отношение
   менеджмент
   политология
   музыка
   религия
   социология
   спорт и туризм
   таможенная система
   физика
   химия
   философия
   финансы
   этика и эстетика
   правознавство

Гум. дополнения
   Отчеты
   Расчетные работы
   Лекции
   Задачи
   Лабораторные работы
   Литература
   Контрольные работы
   Сочинения
   Гум. soft
   Рефераты

Рефераты
   Авиация и космонавтика
   Административное право
   Арбитражный процесс
   Архитектура
   Астрология
   Астрономия
   Банковское дело
   Безопасность жизнедеятельнос
   Биографии
   Биология
   Биология и химия
   Биржевое дело
   Ботаника и сельское хоз-во
   Бухгалтерский учет и аудит
   Валютные отношения
   Ветеринария
   Военная кафедра
   ГДЗ
   География
   Геодезия
   Геология
   Геополитика
   Государство и право
   Гражданское право и процесс
   Делопроизводство
   Деньги и кредит
   ЕГЭ
   Естествознание
   Журналистика
   ЗНО
   Зоология
   Издательское дело и полиграф
   Инвестиции
   Иностранный язык
   Информатика
   Информатика, программировани
   Исторические личности
   История
   История техники
   Кибернетика
   Коммуникации и связь
   Компьютерные науки
   Косметология
   Краеведение и этнография
   Краткое содержание произведе
   Криминалистика
   Криминология
   Криптология
   Кулинария
   Культура и искусство
   Культурология
   Литература : зарубежная
   Литература и русский язык
   Логика
   Логистика
   Маркетинг
   Математика
   Медицина, здоровье
   Медицинские науки
   Международное публичное прав
   Международное частное право
   Международные отношения
   Менеджмент
   Металлургия
   Москвоведение
   Музыка
   Муниципальное право
   Налоги, налогообложение
   Наука и техника
   Начертательная геометрия
   Оккультизм и уфология
   Остальные рефераты
   Педагогика
   Политология
   Право
   Право, юриспруденция
   Предпринимательство
   Прикладные науки
   Промышленность, производство
   Психология
   психология, педагогика
   Радиоэлектроника
   Реклама
   Религия и мифология
   Риторика
   Сексология
   Социология
   Статистика
   Страхование
   Строительные науки
   Строительство
   Схемотехника
   Таможенная система
   Теория государства и права
   Теория организации
   Теплотехника
   Технология
   Товароведение
   Транспорт
   Трудовое право
   Туризм
   Уголовное право и процесс
   Управление
   Управленческие науки
   Физика
   Физкультура и спорт
   Философия
   Финансовые науки
   Финансы
   Фотография
   Химия
   Хозяйственное право
   Цифровые устройства
   Экологическое право
   Экология
   Экономика
   Экономико-математическое мод
   Экономическая география
   Экономическая теория
   Этика
   Юриспруденция
   Языковедение
   Языкознание, филология

Главная > Тех. дополнения > Контрольные работы
Название:
Диагностика и ремонт автомобильного транспорта

Тип: Контрольные работы
Категория: Тех. дополнения
Подкатегория: Контрольные работы

Цена:
1 грн



Подробное описание:

1. Техник А сказал, что ЭБУ двигателя игнорирует сигнал датчика кислорода в режиме работы без обратной связи.
Техник Б сказал, что ЭБУ двигателя игнорирует сигнал датчика кислорода в режиме работы с обратной связью.
Кто из них прав?

Техник Б прав.
Если имеется ошибка в данных любого датчика, в частности датчика кислорода, ЭБУ двигателя входит в способ дублера. В этом случае блок игнорирует неправильный сигнал датчика и принимает предварительно запрограммированное значение, которое позволяет двигателю продолжать работу, хотя с меньшей эффективностью. Если ЭБУ входит в способ дублера, то загорится лампа аварийной сигнализации на комбинации приборов и повреждения будут записаны в память ЭБУ.


ДАТЧИК КИСЛОРОДА (Лямбда-Зонд)

Датчик кислорода служит для правильного определения соотношения воздух-топливо поступающего в цилиндры. В зависимости от напряжения кислородного датчика, ЭБУ корректирует параметры топливо-воздушной смеси по заложенной в нем программе управления. Если ЭБУ определяет топливо - воздушную смесь(ТВС) как бедную, что соответствует низкому выходному напряжению, то он увеличивает время открытого состояния форсунок, если ТВС богатая - высокое выходное напряжение - уменьшает время. При исправном датчике кислорода и СУД диапазон выходного напряжения равен 0,05-0,9В.
Эталон

Отравленный датчик Обедненная смесь Богатая смесь Бедная смесь

Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт очень быстро – вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя
1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Как это работает
Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 - 0,9 В (график 2).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС
А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем
1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.


Если ЛЗ «врет»
В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире.
Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система L-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.
Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов
а – без подогревателя; б, с – с подогревателем.

2. Укажите назначение гидрокорректора (электрокорректора) света фар. Как нужно использовать это устройство при проведении регулировки света фар?

 

Гидрокорректор фар – это устройство, управляющее наклоном фары в вертикальной плоскости (другими словами, вверх-вниз). Он позволяет получить максимальную дальность освещения дороги и в то же время избежать ослепления водителей встречных машин. Гидрокорректор включает в себя главный цилиндр, трубопроводы и два рабочих цилиндра. Главный цилиндр устанавливается в салоне и подключаются к «клавише» управления, рабочие цилиндры монтируются по одному на каждую блок-фару. Поворачивая рукоятку управления, водитель изменяет давление рабочей жидкости в системе – оно передается на поршни рабочих цилиндров, связанные через шток с корпусом блок-фары. Крайнее «верхнее» положение фары соответствует минимальной загрузке автомобиля (один водитель и один пассажир на переднем сиденье). При увеличении нагрузки в салоне нос авто задирается, значит, фары нужно опустить. Водитель поворачивает регулятор в положение, соответствующее новой нагрузке. Давление снижается, шток уходит внутрь цилиндра под действием возвратной пружины, и световой пучок опускается.

 

 

 

 

 

 

 

 


Электромеханический корректор фар (ЭМКФ) является альтернативой гидравлическим корректорам, которыми оснащаются некоторые модели автомобилей. ЭМФК полностью идентичен гидравлическому корректора по стыковке привода с механизмом наклона луча фары, но отличается от последнего высоконадежной работой при дополнительном воздействии низких и высоких температур. ЭМКФ состоит из двух приводов (по одному на каждую фару) и общего блока управления. Все части конструкции защищены от проникновения пыли и влаги, размещены в прочных корпусах, электроразъемы имеют защитные чехлы. Блок управления корректора размещается на передней панели автомобиля и имеет 15 положений вала, регулирующего направление луча.

 

 

Электромеханический корректор положения фар состоит из трех небольших коробочек: в одной - электронные платы и регулятор положения фар, в двух других - исполнительные электродвигатели с планетарными редукторами и потенциометрами обратной связи. Последние (R3 в блоках А2) нужны, чтобы заданное водителем положение фар не изменялось со временем и не зависело от прогрева элементов схемы, колебаний напряжения питания и других внешних факторов. Вся система работает на принципе непрерывного сравнения напряжений, поступающих от задатчика (блок резисторов с переключателем SA1) и движка потенциометра обратной связи, который механически связан с выходным валом моторедуктора. Как только положение фары по какой-либо причине изменится, последует разбалансировка измерительной схемы и на выходе микросхемы компаратора (DA1 или DA2) появится напряжение коррекции - двигатель вернет фары "на место". Эти микросхемы, пожалуй, самые дорогие и дефицитные компоненты всего устройства - ТСA0372 фирмы "Моторола" (США). Независимо от типа корпуса (8- или 16-выводной), нумерация выводов соответствует указанной на схеме, однако во втором случае все задействованные выводы расположены с одной стороны микросхемы. К сожалению, разработчики не нашли российского аналога сдвоенному компаратору, способному отдать в нагрузку ток до 1 А. Поскольку для питания микросхем требуется стабильное напряжение, не зависящее от колебаний в бортовой сети, в состав электронного блока входит стабилизатор на транзисторах VT1-VT3. В состоянии покоя, когда положение фар соответствует заданному, ЭКМФ потребляет не более 50 мА, а при работе моторов - до 1 А. При этом весь процесс перемещения оптических элементов из одного крайнего положения в другое занимает не более 20 с.


3. Какими приборами можно определить степень разряда аккумулятора? Каков допустимый процент разряда в летнее и зимнее время
3.1 Вольтметром


Степень заряженности:
Слабая
Нормальная
Хорошая 12.5 В
12.6 В
12.7 В

 

 

 

3.2 Проверка аккумулятора с помощью нагрузочной вилки
С помощью нагрузочной вилки можно проверить степень зарядки и состояние аккумулятора. Проверять следует каждый элемент батареи подсоединением нагрузочной вилки к его выводам. Проверка д.б. кратковременной. Аккумуляторная батарея нормальна, если в течение 5 секунд
напряжение на каждом из элементов не изменяется и составляет 1,7-1,8 В. Если напряжение не изменяется в течение 5 сек, одинаково для всех элементов, но величина его находится в пределах 1,4-1,7 В, то необходимо произвести зарядку. Если напряжение ниже 1,4 В, батарея неисправна. Величина напряжения при измерении нагрузочной вилкой характеризует степень разрядки аккумулятора. Напряжение в диапазоне 1,4-1,5 В свидетельствует о 75%-ной разрядке аккумулятора в диапазоне 1,5-1,6 В - о 50%-ной разрядке, в диапазоне 1,6-1,7 В - о 25%-ной разрядке, в диапазоне 1,3-1,4 В - о 100%-ной разрядке или о неисправности элемента. При отличии напряжения на 0,2 В для одного из элементов по отношению к другим элементам требуется зарядка или ремонт батареи.

3.3 Ареометр
Универсальный ареометр показан на рис. 1.
При измерении поплавок не должен касаться стенок цилиндрической части стеклянной трубки.
Одновременно необходимо замерить температуру электролита.
Результат измерения плотности приводят к +25°C.
Для этого к показаниям денсиметра надо прибавить или отнять поправку, полученную с помощью табл. 1 (в соответствии со знаком указанного значения поправки).

 

рис. 1

Если при измерении окажется, что НРЦ ниже 12,6 В, а плотность электролита ниже 1,24 г/смі, батарею необходимо подзарядить и проверить зарядное напряжение на ее клеммах при работающем двигателе.

Температура электролита, °C Поправка, г/смі Температура электролита, °C Поправка, г/смі
−65…−50 −0,06 −4…+10 −0,02
−49…−35 −0,05 +11…+24 −0,01
−34…−20 +26…+40 +0,01
−19…−5 −0,03 +41…+55 +0,02
Таблица 1 Температурные поправки к показаниям денсиметра при приведении плотности электролита к +25°C


При разряде батареи на 25% зимой и 50% летом батарею автомобиля требуется зарядить.




Комментарий:

Диагностика и ремонт автомобильного транспорта


Рекомендовать другу
50/50         Партнёрка
Отзывы